Peter Greenwood 为 Quanta Magazine
介绍
我们的宇宙有一个开始。总有一天,它也会结束——但哪一个呢?随着宇宙膨胀,恒星和星系变得暗淡,一切都会慢慢变得更冷、更孤立吗?加速宇宙膨胀的暗能量最终会撕裂时空吗?我们的世界和宇宙的其他部分是否有可能有一天在没有警告的情况下不复存在?在这一集中,Steven Strogatz 与加拿大滑铁卢 Perimeter 理论物理研究所的理论宇宙学家Katie Mack讨论了最终的大结局。麦克还是 2020 年 8 月出版的《万物的终结》(从天体物理学角度讲)的作者,她在书中描述了科学家确定的宇宙可能终结的五种情景。
在Apple Podcasts 、 Spotify 、 Google Podcasts 、 Stitcher 、 TuneIn或您最喜欢的播客应用程序上收听,或者您可以从Quanta 流式传输。
凯蒂麦克
凯蒂麦克(01:47):非常感谢你邀请我。
Strogatz (01:48):这对我们来说真是一种享受。我可以从个人问题开始吗?是什么让您想到这个话题——思考宇宙的终结?为什么,为什么那会抓住你?
Mack (01:56):你知道,我认为这只是我对宇宙的普遍好奇心的一部分。我在成长过程中经常思考宇宙的起源,关于大爆炸。你知道,所有这些关于我们从哪里来的大问题。在某个时候,通过我对宇宙学的研究,我不断地遇到这个结局的问题。所以我记得读过关于大撕裂的文章——其中一种可能性,宇宙在某种程度上将自己撕裂——当我在读研究生的时候,我只是对宇宙可能以这种非常暴力的方式结束的概念着迷。然后,当我继续进行宇宙学研究时,我遇到了真空衰变——你知道,宇宙的这种突然终结——并且对宇宙可能毫无理由地一闪即逝的概念着迷.
(02:46) 所有这些主题都在我的专业工作中不断出现。我只是想再探索一下。我想讲的这个故事,我认为在关于宇宙学的公共讨论中很少被提及。关于开始、大爆炸的讨论很多,但关于结束的讨论却很少。
(03:05) 我认为,每次遇到它时,它总是让我着迷。只是看看围绕我们宇宙的最终演化如何完成的讨论,以及这说明了现在正在发生的事情。关于宇宙的结构,关于存在的整体形态。这对我来说是个有趣的问题。
Strogatz (03:27):是的,我的意思是,我认为这是很自然的事情。我认为我们大多数对科学感兴趣或只是对生活有重大疑问的人都会对此感到疑惑。
(03:38) 我认为我们应该从这里开始:热寂,我们称之为宇宙热寂的情景,已经存在了很长时间。告诉我们那个,因为我知道你认为这可能是最有可能的。
Mack (03:50):是的,所以热寂被认为是物理学中最被接受的一种。它有时被通俗地称为 Big Freeze。热寂背后的想法是,我们知道宇宙在膨胀,而且我们知道膨胀在加速。所以遥远宇宙中的星系,它们离我们越来越远。他们之间的距离越来越远。而且这种扩张仍在继续,并且随着时间的推移变得越来越快。我们不知道它为什么会加速——我只是指出这一点。目前,它 [被认为] 是由于我们称之为暗能量的东西造成的。我们不知道暗能量是什么,但它是使宇宙膨胀得更快的东西。
(04:23) 我们关于暗能量的想法包括这样一种可能性,即暗能量只是宇宙的一种属性,称为宇宙学常数,其中每一点空间都有一种内置的弹性。随着我们有更多的空间,随着宇宙的膨胀,我们也有更多的弹性,因为我们有更多的暗能量,更多的宇宙常数。所以宇宙一直在膨胀、膨胀、膨胀。
(04:48) 如果是这样的话,如果这真的会发生,那么你得到的是,你会得到每个星系或每个星系团越来越孤立于所有其他星系,宇宙变得越来越随着时间的推移,越来越空,越来越分散,越来越冷。因为,你知道,我们知道在一开始,宇宙非常热而且密度很大。从那以后它一直在扩张。它正在冷却,它变得更加分散。所以这种情况会无限期地持续下去。当这种情况发生时,如果你所在的星系由于所有其他星系都离得太远而突然被孤立,那么就没有相互作用,没有星系进入并带来新的气体形成新的恒星。作为一个星系,你会燃烧掉你拥有的所有星星。你燃烧掉了所有的氢,所以你不能制造任何新的恒星。星星死去,燃烧殆尽,然后变暗。
(05:36) 有一堆黑洞。最终,如果你让黑洞呆得足够久,它就会辐射掉它的能量——黑洞蒸发,一切都会衰变成这种无序的能量。因此,这个银河系中的一切都向外辐射。物质腐烂并分崩离析。如果你这样想的话,所有存在的东西都会有这种无序的能量,有点像废热。
(06:01) 当你到达一切都腐烂的阶段时,你就会达到所谓的最大熵。所以热力学第二定律告诉我们熵或无序度会增加到未来。你知道,[出于]同样的原因,你不能拥有一台永动机,因为如果你试图让某个东西永远旋转,它就会崩溃,它会因摩擦和热量而失去一些能量,而且它’会崩溃的。同样,在宇宙中,一切都会衰变成废热。这就是为什么它被称为热寂。就是你拥有的一切都会衰变成无序的能量,你会达到最大熵状态,在这种状态下,不会再发生无序,一切都变得毫无意义。从本质上讲,它是完全、完全无结构的。
(06:49) 那是宇宙的最终热寂。人们确实认为这是一种令人沮丧的方式,因为你最终会发现一切都非常寒冷、黑暗、空虚和孤立,并且永远腐烂。
Strogatz (07:03):我明白你为什么给它取名为 Big Freeze,因为热寂让它听起来像是会很热。然而,如果我没听错的话,这会有点不温不火或更糟。
麦克(07:11):没错。是的。在这种情况下,“热”是这个词的一种技术、物理意义,它是所有创造物的废热。
(07:19) 但好的一面是,这需要很长时间才能实现。因此,直到大约 1000 亿年后,我们才能看到其他星系,因为它们距离太远而且移动得太快。所以你知道,我们银河系中一些质量最小的恒星可能会持续一万亿年左右。所以在我们的宇宙变得寒冷、黑暗和空虚之前,我们还有一些时间,如果我们要那样做的话。
Strogatz (07:41):由于空间的拉伸,空虚是另一个有趣的方面。那样不仅平淡无奇,杂乱无章,而且很寂寞。就像一切都如此远离其他一切。
麦克(07:56):对。一个非常有趣的方面是你会到达某个点,我们将没有证据表明其他星系甚至存在。不会有任何直接的观测证据表明大爆炸发生了,因为我们无法看到那个不断膨胀的宇宙。我们不能说,“好吧,如果宇宙现在变大了,它在过去一定变小了。”我们将无法看到大爆炸的那种残余光,即宇宙微波背景,它使我们能够研究非常非常早期的宇宙。它将不仅是一个寒冷、黑暗和空虚的宇宙,它将是一个几乎没有什么可学的宇宙,因为我们将无法看到周围环境之外的事物。
Strogatz (08:34):我想以防万一有人感到困惑——我认为没有人会——提到“我们”,你不是真的那个意思,对吧?我们不在这里,那时我们看不到任何东西。我们也分崩离析了。
Mack (08:45):我们早就走了。我的意思是,太阳会在某个时候变得如此明亮,以至于它会从地球上的海洋中蒸发掉。而这只需要大约十亿年。所以,你知道,在地球完全无法居住之前,我们还有 50 亿到 10 亿年。所以,是的,这已经过去很久了。无论我们之后发生什么,或者如果我们设法创造出可以承载我们意识的小型智能机器,或者,或者如果我们散布到星星中,你知道,生活在其他地方并利用这些地方剩下的一点点能量垂死的星星。在某个时候,你知道,我们会无事可做,因为没有足够的能量集中在正确的方式上来使用它。
Strogatz (09:26):让我们假设我们相信空间和时间是量子化的,就像量子引力一样进入普朗克长度尺度的事物。如果只有有限数量的空间和时间包裹,数量很大但数量有限,即使在热寂情况下,也不会出现每个状态最终都会发生的复发——我的意思是,在非常、非常长的时间尺度下——回来?这不会是结束,即使在热寂之后。
Mack (09:54):我确实在书中的热死章节中谈到了这个,即永恒轮回的想法。是的,所以有一种看待热寂的方式,你有点处于熵最大化的这种永恒的热寂状态。但即使在最大熵状态下,你也会有随机波动,让某些东西聚集在一起。并且有一些有趣的计算,你可以根据一个完全同质的无序宇宙来计算,一架三角钢琴需要多长时间才能随机组装在宇宙的中间,就在虚空的中间。
(10:29):这是一个非常非常大的数字,对吧?但如果你拥有这种真正永恒的状态,那么它就会发生。它会在某个循环时间尺度上发生无数次。你可以扩展它说,好吧,如果一架大钢琴可以自行组装,那么地球也可以,银河系也可以,宇宙中曾经存在过的任何状态的整体也可以。所以当你到达那个点时,你可以说,好吧,此时此刻,宇宙中原子和分子的特定分布,此时此刻,它一定有可能再次发生——在一个真正的, 真的很长的时间尺度,但这一定有可能重现。然后宇宙将从这一点开始再次走向死亡。
(11:13) 所以你得到了这个想法,宇宙历史上曾经发生过的每一刻都可以再次发生,无限次。这是一个非常令人费解的概念。现在,文献中对此有争论,这是否是一个明智的计算。但它确实让人想起——尼采写下的噩梦场景就是基于这个想法。你,你一遍又一遍地永远生活在同一个时刻。那不是很可怕吗?而且,你知道,也许这在物理上是可能的,也许这是可能发生的事情。关于你是否应该以这种方式思考这个问题,文献有点反复。但这很有趣。它也与这种可能性有关,让我们——。如果,如果一架大钢琴可以在宇宙中组装自己,那么一个认为自己经历过整个宇宙的大脑也可以吗?这被称为玻尔兹曼大脑假说。
Strogatz :哦,我听说过。我不知道那是什么。嗯不错。
麦克(12:12):所以也许不是存在的一切,有一个大脑此刻认为它正在进行这种对话并且在 138 亿年的宇宙中度过了一生。然后在某个时候,那个大脑将再次消失,因为它是一个空的热死亡宇宙中的随机粒子集合。
斯特罗加茨:好吧……
Mack (12:33):所以你也可以做那个计算。如果你以某种方式进行计算,你会发现这比宇宙存在的可能性要大得多。
斯特罗加兹:嗯嗯。
麦克(12:42):产生一个认为它在宇宙中的大脑比产生一个新的大爆炸然后一个实际的宇宙更有可能。但是同样,有不同的计算方法可以得到不同的答案。所以这是另一个问题,做这些计算是否有意义?如果你做这个计算,你会发现我们更有可能是一个随机大脑中的一个随机想法,只是存在于虚无之中。它不一定告诉你,那是宇宙可能的场景,它告诉你这些计算没有用,在宇宙的背景下没有真正意义,我们的假设一定有问题。但是,当你到达这些非常、非常巨大的时间尺度时,你如何处理无限宇宙的这种可能性,其中任何事情都可能发生无限次,这是宇宙学中一个非常有趣的问题。
Strogatz (13:36):好吧,好吧,谢谢你让我沉迷于此。好的。但我确实想确保我们参与其中的一些。
那是场景 #1,热寂,大冰冻,以及关于在野外永恒轮回的这个很好的脚注——我不想说悖论,但是,它带来的真正令人费解的各种考虑向上。好的,让我们继续#2。什么是大撕裂?
麦克(13:58):所以大撕裂是一个回到暗能量问题的想法。我们不知道是什么让宇宙膨胀得更快。我们称它为“暗”能量,因为我们不知道它是什么。但是有一些东西在加速宇宙的膨胀。现在,如果它只是一个宇宙学常数,如果它只是宇宙的一个属性,那么我们就知道这是怎么回事了。你知道,它把我们引向热寂,所有的星系都被最大限度地隔离,然后它们就消失了。
(14:23):但是暗能量还有其他假设的可能性。在某些地方,它不仅是宇宙中的恒定背景,而且是动态的。这可能会随着时间而改变。具体来说,你可以写下随着时间的推移变得更强大的东西的方程式。无论这是什么,它都是宇宙中内置的那种弹性,它是一个动力场,一个能量场,并且随着时间的推移变得更加强大。因此它开始越来越快地拉伸宇宙。不仅会导致加速,还会在物体内积聚。
(14:57) 关于宇宙常数的一件事。如果存在宇宙学常数,则它的密度在宇宙中是恒定的。这意味着如果你在某个区域周围画一个球体,那么这个球体中就有一定量的宇宙学常数。即使宇宙在膨胀,那个球体中的物质仍然是一样的,对吧?宇宙学常数保持不变。在我们称之为“幻影”暗能量的宇宙中,该球体中的暗能量数量会随着时间的推移而增加。例如,如果你有一个星系生活在那个球体中,并且那个星系被引力束缚并且一切都被引力结合在一起,在一个宇宙常数宇宙中,那很好。轨道不变。银河保持原样。在一个充满幻影暗能量的宇宙中,球体内部的弹性正在增加。暗能量正在积累,它可以将星系拉开。它可以把恒星从银河系拉开,它可以把行星从恒星拉开,而且它只会在物体内不断积累。
(15:55) 因此,所有暗能量所做的并不是只是将远处的事物彼此远离,而是创造更多的空白空间,它实际上是从内部拉伸事物。我经常告诉人们,比如,“哦,你知道,宇宙正在膨胀,正在发生的事情是遥远的星系之间的距离越来越远。但是这个房间并没有扩大。”在一个充满幻影暗能量的宇宙中,这个房间最终会膨胀。
斯特罗加茨:我明白了。
麦克(16:19):所以它会做的是,它会从大规模建设开始。所以它会把旧的星系团拉开。它会将恒星拉离银河系的边缘。但它会变得越来越强大,以至于它会开始将行星从恒星上拉开,开始将卫星从行星上拉开,并在行星内建立起来,最终爆炸行星本身。然后它变得越来越强大,因为它越往下走,你最终会撕裂分子,撕裂原子,最终撕裂宇宙本身。
Strogatz (16:50):在你描述的这张图片下,情况真的是这样吗,就好像它在长度尺度上从最大到最小下降。它会按照那个顺序进行吗?
Mack (17:00):嗯,它是什么,它变得越来越强大。所以它首先解除绑定最弱的东西,最大的东西是最弱的绑定。然后当你的尺度越来越小,你就会喜欢上原子结合,核结合。所以只有更强的绑定。
斯特罗加茨:我明白了。我懂了。
Mack :从这个意义上说,它有点积累。
Strogatz (17:18):哇,这很有趣,事情正在从内部被撕裂,而不是……就像,我曾想象过热寂和宇宙常数的场景,几乎就像我们谈话时一样关于宇宙是如何膨胀的,人们会说,“嗯,它在膨胀成什么?”然后有人说,“不,在有弹性的橡胶气球的表面画点,”你知道的,或者类似的。这是某种宇宙学常数。听起来气球上的点离得更远了。比如说,星系之间的距离越来越远。有没有图片可以代替 Big Rip 的气球?听起来暴力多了。
麦克(17:55):嗯,当我使用气球比喻时,我通常会说,想象,就像月球表面的小蚂蚁。随着气球变大,蚂蚁之间的距离也越来越远。但蚂蚁本身并没有真正注意这一点。它们有点像它们自己的小物件。在大撕裂场景中,更像是在气球上画一个星系,然后将气球展开。在那张照片中,甚至银河系本身也会变得更大。所以物体本身会变大。在某个时候,你会到达气球本身有点爆炸的地步。你没有得到那个方法。
(18:26) 气球类比在细节方面存在问题,但这是您可以拥有的图片。
(18:53):现在,我应该说大多数宇宙学家不认为大撕裂会发生。它打破了宇宙中能量条件的某些规则。所以我们认为关于能量如何在宇宙中移动应该是正确的,幻影暗能量打破了这些规则。因此,作为一个场景,它可能不可行。但话虽如此,我们不能完全排除观察的可能性,我们只能说,当我们观察宇宙现在的演化方式时,我们可以说大撕裂几乎肯定不会在下一次发生,比如说, 2000亿年。因为你永远不能说它 100% 不会发生。但根据我们的测量,我们可以设定一个时间限制,我们可以说这几乎肯定不会在特定时间范围内发生。
Strogatz (19:15):嗯。那么,我们应该继续#3 吗?我听说的这个来自我们在大型强子对撞机上学到的东西,街上的消息是这个可能是你最喜欢的,即使你认为它不是最有可能的。它被称为真空衰变理论。
麦克(19:33):是的。所以真空衰变是我在大型强子对撞机发现希格斯玻色子时才了解到的东西。我当时听说它的原因是因为人们开始写关于真空衰变的论文以响应希格斯玻色子的发现。因为希格斯玻色子的特性表明真空衰变实际上是有可能的。
(19:56) 其背后的想法是这样的。这是一个非常技术性的故事,但我会尝试简化它。所以这个想法是关于希格斯玻色子的有趣之处不是粒子本身。事实上,希格斯玻色子意味着希格斯场的存在。现在,希格斯场是一种遍布整个空间的能量场。本质上,大型强子对撞机所做的是,它激发了那个能量场,从那个能量场中激发了一个粒子,而这个粒子就是被识别出来的东西。但这意味着宇宙中存在着这种能量场。而那个能量场有一定的价值。我们称那个能量场为希格斯场。还有一个关于粒子如何与能量场相互作用的完整故事就是某些粒子如何具有质量。它与整个画面息息相关。
(20:43) 但从物理学的角度来看,希格斯场的重要之处在于,在非常非常早期的宇宙中发生了一个过程,希格斯场发生了变化。所以在非常非常早期的宇宙中,希格斯场具有不同的价值。这有点像它是一个具有某种价值的领域,从某种意义上说,这个房间的温度在任何地方都有价值。你可以定义一个温度场,它有不同的值,无论你靠近窗户,靠近门,等等。希格斯场是一个在任何地方都具有相同值的场,但它是一个在整个空间都具有特定值的场。它有一些与之相关的能量。
(21:15) 现在,希格斯场的取值与粒子物理学在宇宙中的工作方式有关。所以在非常非常早期的宇宙中,希格斯场是不同的。粒子与它的相互作用不同,宇宙中有一组不同的粒子。他们都没有质量。宇宙中有不同的相互作用。你知道,我们拥有的不是电力和磁力以及强核力和弱核力,而是一组不同的力。存在着一种力的组合,存在着不同的粒子,但它们都没有质量。然后发生了一个叫做对称性破缺的事件,希格斯场发生了变化,它呈现出不同的价值。当这种情况发生时,就允许我们现在在宇宙中了解的所有粒子和燃料的存在。所以你知道,电子和夸克,它允许存在电磁力和强核力和弱核力。一切都融入了我们今天所经历的那种物理学。这很好,因为这意味着我们可以拥有原子和分子,我们可以存在。
Strogatz (22:16):对不起,我不得不暂停一下,因为这听起来很符合圣经。 “那很好,”对吧?它是这么说的,对吧? “要有光。神看着是好的。”
麦克(22:26):嗯,我的意思是,在这种情况下,我们很高兴希格斯场发生了变化,这种对称性破坏事件的发生是因为它让我们得以存在。我的意思是,你可以谈论,你知道,如果它没有发生,我们就不会为此感到高兴。那里有一个完整的论点。但无论如何,它发生了;现在我们存在了。
(22:41) 问题在于,当希格斯玻色子被发现时,对希格斯场和其他粒子质量的测量,给了我们关于希格斯场对希格斯场如何演化的暗示。这些暗示似乎指向希格斯场可能再次发生变化的可能性。这将是非常糟糕的,就像第一次改变是好的一样。如果它再次发生变化,我们将陷入无法存在的境地,我们的粒子无法结合在一起。自然常数会改变。会有不同的力和不同的粒子。它会使我们进入所谓的 真正真空状态。我指的不是什么都不存在的意义上的“真空”。真空状态本质上是物理运作方式的不同状态。所以我们说我们处于某种真空状态。可能存在不同的真空状态。所以如果希格斯场真的有这种变化的可能性,那就意味着我们所处的真空状态被称为假真空。真正的真空是宇宙宁愿处于的真空状态,希格斯场宁愿处于真空状态。最终,如果你等待足够长的时间,希格斯场将变成那样其他值,并将演变成真正的真空状态。
(24:01) 它发生的方式有点……戏剧化。所以你可以把它想象成一种亚稳态的宇宙,意思是“不完全稳定”,就像,如果你把咖啡杯放在桌子边缘,它会坐在那里,但有东西可能会敲它关闭,它可能会掉下来,它真的宁愿在地板上。你可以认为我们的希格斯场可能处于那种状态,你所需要的只是,为了将它转变为另一种状态,你需要直接扰乱希格斯场,就像你可以,你知道,把咖啡杯从桌子上摔下来。或者你只需要依赖所有这些粒子和场都依赖于量子力学的想法,量子力学的规则,量子力学说有时候,有时候你的咖啡杯可能会掉到地上,对吧?量子力学的不确定性表明,每隔一段时间,如果你把一个粒子放在墙的一侧,它就会出现在另一侧。这就是所谓的量子隧穿。这是我们一直在亚原子尺度上观察到的事情。这也适用于希格斯场。
(25:03) 因此,在这样一种状态下,希格斯场存在某种衰减时间,如果你将希格斯场单独放置足够长的时间,最终宇宙中某处的希格斯场的一部分将量子隧道进入另一种状态.作为亚原子尺度的状态,这可能不是问题。但不幸的是,如果希格斯场的一部分进入这个新状态,进入真真空,那么它周围的所有希格斯场也会落入真真空。
Strogatz (24:33):哦,真的吗?所以会有某种连锁反应,就像它点燃了整个事情一样。
麦克:没错。确切地。
Strogatz :我不知道这个词是否合适。但是,是的。
Mack (25:35):是的,是的,这就像,如果你的桌子上有一条链条,而你——一个链环从桌子上掉下来,它会在掉落时拉下所有其他链环。你会发生类似的事情。你会有这种级联,事件一旦在一个点发生,它就会在它周围发生,它会产生这个真正真空状态的气泡,它会以大约光速在宇宙中膨胀。
斯特罗加茨:哦。
Mack (25:58):出于几个原因,这很糟糕。一是那种气泡的边缘,气泡壁有一些与之相关的能量,如果气泡壁撞到你,它会立即把你烧成灰烬。另外,如果你进入气泡,你就处于真正的真空状态,那里的物理定律是不同的,你的粒子不再结合在一起。此外,在 80 年代进行的一项计算表明,一旦你处于真正的真空状态,那里的空间基本上是引力不稳定的。所以你会立即坍缩成一个黑洞。
Strogatz :伙计,你可以从各个方向得到它。
麦克(26:34):完全正确。因此,如果发生这种情况,如果这个量子事件发生在宇宙的某一点,那么那个气泡就会以大约光速膨胀,并摧毁宇宙中的一切。因为它正在发生,它是光速的,你看不到它的到来。当它的信号传到你这里时,它已经在你的头顶上了。但另一方面,你不会感觉到它,因为你知道,你的神经冲动不会传播得那么快,你不会真正注意到它发生了。但是你只会眨眼不存在。
Strogatz (27:04):我的意思是,光速使它成为一件有趣的事情,因为宇宙非常大,甚至相对于光速也是如此。所以它可能发生在遥远的地方,130 亿光年之外,不是吗?
麦克(27:16):当然,当然。的确,宇宙的某些部分正在以比光速更快的速度被宇宙膨胀拉离我们。因此,如果泡沫发生在那些遥远的地区之一,那么泡沫就不会到达我们这里。但是因为它是一种随机事件,到处都有相同的衰减率,所以如果泡沫发生在很远的地方,它也很可能发生在附近。
斯特罗加兹:啊哈。好的,说得好。
Mack (27:40):幸运的是,我们可以根据当前数据估算的衰减时间约为 10 的 100 年次方。所以我们认为这不会很快发生。如果我们确实认为它会发生,那么几乎可以肯定,这将是一个非常非常长的时间。但是因为它是一个量子事件,所以它发生的确切时间从根本上是不可预测的,就像你无法预测某个特定原子何时会在放射性衰变过程中衰变一样。你只能给出一大块东西的半衰期。同样,对于宇宙,我们不能肯定地说它不会在这里发生,你知道,在接下来的五分钟内。我们只能说,很可能,在我们可观察的宇宙中,它不会在未来 10 的 100 次方或 10 的 500 次方内发生。
(28:25) The other caveat to keep in mind is that these calculations are based on taking what we know about the Standard Model of particle physics extremely seriously. And the Standard Model of particle physics, which is our sort of understanding of how particles work in this universe, is, we think, incomplete. It doesn’t include dark matter; it doesn’t include dark energy. We’re pretty sure that there are holes in it. And if we really had a more complete picture of particle physics, it might not include the possibility of vacuum decay at all.
Strogatz : OK.
Mack (28:58): So vacuum decay is an idea that comes about when we sort of extrapolate beyond what we think, you know, is the limit of validity of our theories. But it is a fascinating possibility. The reason I enjoy it so much as an idea is that it’s this very, very profound connection between the tiniest scales, the very, very early universe and the destruction of the entire cosmos.
Strogatz (29:21): Nice. Right. I mean, it’s, it’s very…. It’s just, there’s something so fundamental about this mechanism, where the whole laws of physics just change on you in a blink of an eye. But also that what a picture this idea of the, the edge of the vacuum bubble or whatever you called it coming at you…. Yikes.
Mack : Yeah.
Strogatz (29:42): Theory #4, it’s time for theory #4 to step onto the field here. This is the scenario known as the Big Crunch, which certainly sounds violent and interesting. What, what is the Big Crunch?
Mack (29:56): Well, the Big Crunch is an idea that’s really been around quite a long time. It was the idea that was sort of most accepted as likely in sort of the 1960s. The idea behind the Big Crunch is that we observed that the universe is expanding. And there’s the question we have to ask: Is the universe going to continue extending forever? Or will it re-collapse at some point? So we know the universe was small and hot and dense at the very beginning. And it’s been expanding ever since. And there should be some interplay between the expansion and gravity in that whole story, right? So as the galaxies are being pulled apart from each other, by the extension of space, they also have gravity pulling toward each other. And so the existence of matter in the universe should just slow the expansion through the fact that everything is attracted toward everything else.
(30:41) Over the years, there has been an attempt to figure out, is the expansion going to win? Or is gravity going to win? And we now know that the expansion is very likely to win, because we see that the expansion is actually speeding up, because dark energy is making the expansion speed up. And so we don’t see a clear way where the universe could stop and re-collapse. But back in the 1960s, we didn’t know, and the preliminary data seemed to suggest that there was more gravity than expansion in the sense that the universe would stop expanding, and eventually re-collapse.
(31:13) And I should also say that, you know, we don’t think this is a favorite idea now. But because we don’t know what dark energy is, we don’t know for sure that it’s not something that could sort of turn around. You know, we know that it’s causing expansion now. We don’t know that it’s not something that could change, that might be some dynamical field where at some point, it would cause a compression instead of expansion.
(31:34) So we don’t know for sure, but I think it’s the scenario that I find most terrifying, even though in a sense, it may be one of the least likely because it seems to contradict the current data. The idea that the universe could start compressing everything is really, really upsetting. Because, you know, right now we see the galaxies getting farther away. We see the universe sort of cooling and emptying out. If the universe started to contract, then what we would see is, we could see all these distant galaxies kind of rushing toward us. And galaxies would be colliding with each other all the time, but distant galaxies would come toward us and the universe would get very, very dense and crowded.
(32:12) And worse than that, all the radiation in the universe would also be compressed. That means not only would it get hotter, just because more radiation is in a smaller space. But also all of the radiation would be kind of hardened into higher energy radiation, higher frequency radiation. So there’s a process that happens in the universe during expansion called redshift, where radiation is stretched out to longer wavelengths. So you know, visible light becomes infrared, becomes radio. If you had compression, then all of that visible light from all the stars that have ever shown in the universe would start to be compressed into ultraviolet, into x-ray, into gamma ray light. And it would start to just cook the universe in this very profound way.
(32:57) And there was a really fascinating paper from, I think, 1969 by astronomer Martin Rees, where he calculated that in this Big Crunch scenario, at some point, the ambient temperature of space, the radiation in space from just all that starlight being compressed, would be enough to cause thermonuclear reactions along the surfaces of stars, and would cook the stars from the outside in, just from the radiation of space. And you know, at that point, like nothing is survivable. So it’s an idea that I find personally quite upsetting, the idea that we could just be cooked by the radiation of space as the universe is kind of collapsing all around us.
Strogatz (33:38): Well, yeah, interesting that that’s the one that bugs you the most, because I mean, all of them have their own…. You know, like, do you want to go suddenly? Do you want to boil? Do you want to freeze?
Mack (33:49): Right. Right. I mean, none of none of them end well, right? But with the heat death, you have a really long time. So that’s nice. You know, it’s all kind of gentle. With vacuum decay, you don’t see coming. So like, whatever, you don’t even notice.
Strogatz : OK.
Mack (34:04): It’s kind of a non-event, from the perspective of a conscious being. But both the Big Rip and the Big Crunch, you would see coming, and that is quite scary.
Strogatz (34:13): Uh huh. I guess we’re now up to the last one, the Bounce, or what I think I remember as a child used to be called the Pulsating Universe. Is that the same idea?
Mack (34:23) So in this case, I’m kind of lumping a few different ideas into one broad category of cyclic universe or bouncing universe. The idea there is that essentially attempts to explain the very beginning of the universe…. So there are certain aspects of the early universe that are hard to explain in our current cosmology, you know. How did it get set up the way it was? Why is our universe the sort of shape it is, in terms of the sort of shape of space? Why was our universe low enough entropy in the past that the entropy can be increasing into the future to the state where it is now?
(34:54) These are all profound questions about the very beginning. And there have been some attempts to answer these questions by saying, “Well, maybe the beginning wasn’t the beginning. Maybe there was something before the beginning that created the conditions for the universe that exists today.” Those lead to these cyclic cosmologies. Either an idea where there was a previous universe that evolved into the Big Bang that we experienced and then evolves into our current universe. Or simply where you just have a constant cycling of universes, where there was something before us, there will be something after us. And some of those ideas involve kind of compression to the new Big Bang, some involve a sort of heat death, and then a new Big Bang coming out of that. Some are sort of, “there was a previous phase, and that evolves into our phase, but nothing’s going to happen in the future.” So these are all kind of ideas that get picked around for possibilities for either the future of our universe, or the end of a previous universe leading into ours.
Strogatz (35:48): At this point, I guess, I like to put on my … not really my skeptics hat, but my scientist hat. It seems like there’s a lot of science in what you’re saying, in that you’re connecting it to what we know about quantum field theory or about general relativity. But what about observations?
Mack (36:05): Yeah, I mean, so fundamentally, we’re never going to be able to answer with complete certainty the question “how the universe will end?” Because, obviously, if it happens, we are not there to write down the answer. But there are a few different ways we approach this question that fundamentally, what we’re trying to do is extrapolate what we know about the universe now and its evolution from the past into the future. And that’s where you end up with this branching of different possibilities. Because there are several different directions that could go and we could go in the future that are consistent with the evolution of the universe up until now.
(36:37) In terms of observational things that we can learn that can tell us more about which of these paths is more likely, there are a few different ways to approach it. One is to try and understand dark energy. So three of these scenarios are hinging very much on what dark energy is, and how it will act. So if we can figure out is dark energy really a cosmological constant? Or is it something that varies? And that might be an impossible question in and of itself because a cosmological constant is kind of a special case of a broader class of dark energy ideas, where you can never be 100% certain that you’re exactly in that state.
(37:16) It’s a little bit — observationally, it’s hard to be there with complete certainty, but we can get more and more certainty about the behavior of dark energy. And maybe we could find a sort of theoretical basis for dark energy. Maybe there’ll be some experimental result in some other way that will tell us that this is really the answer for what dark energy is. So trying to understand dark energy either through cosmological observations, or through experimental tests that can get to the possible sort of fundamental physics of dark energy. Those are all avenues we can explore and try to distinguish between heat death, Big Rip, Big Crunch — those kinds of ideas that hinge on the expansion dynamics.
(37:55) In terms of something like vacuum decay, if we better understand the Higgs field and its connections to other particles and other fields in particle physics, then we’ll get a better idea of whether or not the Higgs field is even capable of decaying in this way. And whether vacuum decay is a possibility, how the Higgs potential changes at different scales. These are all things that are actively being researched with experiments like the Large Hadron Collider.
(38:22) And then when we’re talking about cyclic universes, there we just really need to understand the beginning, right? If we get more information about the very, very early universe through observations, through sort of clever analysis of early universe data, through looking for things like primordial gravitational waves, and what that might tell us about whether or not cosmic inflation occurred in the beginning, or through a better understanding of the particle theory through things like particle experiments that could tell us if the Standard Model of particle physics is really valid, or what else might be underlying it, if there could be higher dimensions of space? That’s another aspect of this question.
(38:59) So all of those are places we can look for trying to understand if cyclic universes are the right direction to be going. And whether there was something before the Big Bang that set up the conditions for our universe today.
Strogatz (39:11): So it does sound like lots of different avenues within fundamental physics is our best shot here. Let’s just talk about the Webb telescope, because I’m sure a lot of people are thinking about that, since especially what you just mentioned in the last case about the cyclic universe is that it’s so much a question about what’s happening in the early universe. And the Webb telescope tells us something about the early universe, but I’m guessing not early enough. Is that right?
Mack (39:35): Yeah. So, the Webb telescope can tell us a lot about the earliest generation of galaxies. And that’s super exciting for me personally, because as a dark matter researcher, the impact of dark matter on those first galaxies could be really different in different kinds of dark matter models. So there’s a lot we could learn about certain aspects of fundamental physics, about things like dark matter, essentially about dark energy as we observe very distant galaxies. and potentially get just a better measurement of the geometry of the universe as we get more of these galaxies. So we can certainly learn a lot about the galaxies and about the large-scale structure of the universe, we’re gonna get some information from the JWST from those kinds of observations.
Mack (40:15): In terms of the very, very early universe, though, it’s really observations of things like the cosmic microwave background. So this kind of light from the very early universe where the universe was still on fire. But it is still in this sort of hot radiation phase, it was glowing with heat and with radiation from this primordial plasma. And with microwave telescopes, we can see that glow. And that can give us some really important information about the very, very, very early universe.
Strogatz (40:42): What do you think about the field of the study of the end of the universe? Any thoughts about where it’s going to go in the next 10-20 years? Is it just that we’re going to keep plugging away on fundamental physics, and that’s going to be our best hope for really making some progress here?
Mack (40:58): I think that’s true. I think that as we continue to learn more about the fundamental nature of the cosmos, both in the sense of, you know, the structure of the cosmos, the shape of space, and the potential for — maybe there are more dimensions of space. Maybe space and time are emergent from some more abstract phenomenon. Maybe we’re gonna figure that out through things like holography and black holes. And there’s a whole other field that we can go into that I don’t want to get too big into right now. You know, so maybe we’ll learn something about the fundamental structures of reality. Maybe we’ll learn what dark energy is. Maybe we’ll learn what dark matter is. Maybe those things will inform our understanding of fundamental particle physics. Maybe we will get more information about the very, very early universe, and we’ll learn something about how the initial conditions for our universe were set up.
(41:45) All of those are super exciting in their own way, right? Every piece of that is something that would be tremendously important for physics, that would revolutionize how we think about the universe in really important ways. And as a side effect, we would learn a little bit about how our universe might end, what our ultimate fate might be. So I think there are very few people who are, you know, really, their main focus is what’s going to happen to the universe? How are we going to end? Really, it’s these other questions that get to the fundamental nature of reality, the evolution of the cosmos, the origins of the cosmos. And those all feed into these big questions about where are we going? What’s gonna happen next?
Strogatz (42:27): Wonderful. Well, we’ve been talking with theoretical cosmologist Katie Mack, author of the book The End of Everything ( Astrophysically Speaking) . Thanks so much for joining us today. Katie,
Mack (42:38): Thanks for having me. This was a really fun conversation.
Announcer (42:40)
Quanta Magazine is an editorially independent online publication supported by the Simons Foundation to enhance public understanding of science.
Strogatz (42:57): The Joy of Why is a podcast from Quanta Magazine , an editorially independent publication supported by the Simons Foundation. Funding decisions by the Simons Foundation have no influence on the selection of topics, guests, or other editorial decisions in this podcast, or in Quanta Magazine . The Joy of Why is produced by Susan Valot and Polly Stryker. Our editors are John Rennie and Thomas Lin, with support by Matt Carlstrom, Annie Melchor and Allison Parshall. Our theme music was composed by Richie Johnson. Special thanks to Bert Odom-Reed at the Cornell broadcast studios. Our logo is by Jaki King. I’m your host, Steve Strogatz. If you have any questions or comments for us, please email us at [email protected] Thanks for listening.
原文: https://www.quantamagazine.org/how-will-the-universe-end-20230222/